Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
Anal Chim Acta ; 1287: 342109, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38182386

RESUMO

BACKGROUND: Tumor-derived exosomes (TEXs) play an important role in the development process of cancer, which can transport a large number of carcinogenic molecules to normal cells, and subsequently promote tumor metastasis. However, TEXs that were utilized in most of previous researches were obtained from the cell medium of tumor cell lines, which cannot reflect the physiological state of primary cells in vivo. Isolation of native TEXs from human plasma with intact function is contributed to exploring the interaction between TEXs and recipient cells for understanding their true biological functions. RESULTS: We developed a strategy that involves both capture and release processes to obtain native TEXs from plasma of cancer patients. An MoS2-based immunomagnetic probe (Fe3O4@MoS2-Au-Aptamer, named as FMAA) with the advantages of high surface area, magnetic response and abundant affinity sites was designed and synthesized to capture TEXs through recognizing high-expression tumor-associated antigens of EpCAM. With the assistance of complementary sequences of EpCAM, TEXs were released with non-destruction and no residual labels. According to NTA analysis, 107-108 TEXs were recovered from per mL plasma of breast cancer patients. The interaction between native TEXs and normal epithelial cells confirms TEXs could induce significant activation of autophagy of recipient cells with co-culture for 12 h. Proteomics analysis demonstrated a total of 637 proteins inside epithelial cells had dynamic expression with the stimulation of TEXs and 5 proteins in the pathway of autophagy had elevated expression level. SIGNIFICANCE: This work not only obtains native TEXs from human plasma with non-destruction and no residual labels, but also explores the interaction between TEXs and recipient cells for understanding their true biological functions, which will accelerate the application of TEXs in the field of biomarkers and therapeutic drugs.


Assuntos
Neoplasias da Mama , Exossomos , Humanos , Feminino , Molécula de Adesão da Célula Epitelial , Molibdênio , Carcinógenos
2.
Analyst ; 148(20): 5002-5011, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37728433

RESUMO

Human angiotensin-converting enzyme 2 (hACE2) is the primary receptor for cellular entry of SARS-CoV-2 into human host cells. hACE2 is heavily glycosylated and glycans on the receptor may play a role in viral binding. Thus, comprehensive characterization of hACE2 glycosylation could aid our understanding of interactions between the receptor and SARS-CoV-2 spike (S) protein, as well as provide a basis for the development of therapeutic drugs targeting this crucial interaction. Herein, 138 N-glycan compositions were identified, most of which are complex-type N-glycans, from seven N-glycosites of hACE2. Among them, 67% contain at least one sialic acid residue. At the level of glycopeptides, the overall quantification of sialylated glycan isomers observed on the sites N322 and N546 have a higher degree of NeuAc (α2-3)Gal (over 80.3%) than that of other N-glycosites (35.6-71.0%). In terms of O-glycans, 69 glycan compositions from 12 O-glycosites were identified, and especially, the C-terminus of hACE2 is heavily O-glycosylated. The terminal sialic acid linkage type of H1N1S1 and H1N1S2 are covered highly with α2,3-sialic acid. These findings could aid the investigation of the interaction between SARS-CoV-2 and human host cells.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Enzima de Conversão de Angiotensina 2/metabolismo , Glicosilação , Ácido N-Acetilneuramínico , Polissacarídeos/química , Ligação Proteica , SARS-CoV-2/metabolismo
3.
Anal Chem ; 95(28): 10703-10712, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37403577

RESUMO

Recent developments in phosphoproteomics have enabled signaling studies where over 10,000 phosphosites can be routinely identified and quantified. Yet, current analyses are limited in sample size, reproducibility, and robustness, hampering experiments that involve low-input samples such as rare cells and fine-needle aspiration biopsies. To address these challenges, we introduced a simple and rapid phosphorylation enrichment method (miniPhos) that uses a minimal amount of the sample to get enough information to decipher biological significance. The miniPhos approach completed the sample pretreatment within 4 h and high effectively collected the phosphopeptides in a single-enrichment format with an optimized enrichment process and miniaturized system. This resulted in an average of 22,000 phosphorylation peptides quantified from 100 µg of proteins and even confidently localized over 4500 phosphosites from as little as 10 µg of peptides. Further application was carried out on different layers of mouse brain micro-sections; our miniPhos method provided quantitative information on protein abundance and phosphosite regulation for the most relevant neurodegenerative diseases, cancers, and signaling pathways in the mouse brain. Surprisingly, the phosphoproteome exhibited more spatial variations than the proteome in the mouse brain. Overall, spatial dynamics of phosphosites are integrated with proteins to gain insights into crosstalk of cellular regulation at different layers, thereby facilitating a more comprehensive understanding of mouse brain development and activity.


Assuntos
Fosfopeptídeos , Proteoma , Camundongos , Animais , Reprodutibilidade dos Testes , Fosforilação , Proteoma/análise , Fosfopeptídeos/análise , Encéfalo/metabolismo
4.
Anal Chem ; 95(2): 881-888, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36580660

RESUMO

Among diverse protein post-translational modifications, O-GlcNAcylation, a simple but essential monosaccharide modification, plays crucial roles in cellular processes and is closely related to various diseases. Despite its ubiquity in cells, properties of low stoichiometry and reversibility are hard nuts to crack in system-wide research of O-GlcNAc. Herein, we developed a novel method employing multi-comparative thermal proteome profiling for O-GlcNAc transferase (OGT) substrate discovery. Melting curves of proteins under different treatments were profiled and compared with high reproducibility and consistency. Consequently, proteins with significantly shifted stabilities caused by OGT and uridine-5'-diphosphate N-acetylglucosamine were screened out from which new O-GlcNAcylated proteins were uncovered.


Assuntos
Processamento de Proteína Pós-Traducional , Proteoma , Proteoma/metabolismo , Reprodutibilidade dos Testes , Acetilglucosamina/química
5.
Nat Commun ; 13(1): 7539, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36477196

RESUMO

Large-scale intact glycopeptide identification has been advanced by software tools. However, tools for quantitative analysis remain lagging behind, which hinders exploring the differential site-specific glycosylation. Here, we report pGlycoQuant, a generic tool for both primary and tandem mass spectrometry-based intact glycopeptide quantitation. pGlycoQuant advances in glycopeptide matching through applying a deep learning model that reduces missing values by 19-89% compared with Byologic, MSFragger-Glyco, Skyline, and Proteome Discoverer, as well as a Match In Run algorithm for more glycopeptide coverage, greatly expanding the quantitative function of several widely used search engines, including pGlyco 2.0, pGlyco3, Byonic and MSFragger-Glyco. Further application of pGlycoQuant to the N-glycoproteomic study in three different metastatic HCC cell lines quantifies 6435 intact N-glycopeptides and, together with in vitro molecular biology experiments, illustrates site 979-core fucosylation of L1CAM as a potential regulator of HCC metastasis. We expected further applications of the freely available pGlycoQuant in glycoproteomic studies.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Biologia Molecular
6.
Nat Commun ; 13(1): 7215, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36433955

RESUMO

Tumour cell metabolic plasticity is essential for tumour progression and therapeutic responses, yet the underlying mechanisms remain poorly understood. Here, we identify Prospero-related homeobox 1 (PROX1) as a crucial factor for tumour metabolic plasticity. Notably, PROX1 is reduced by glucose starvation or AMP-activated protein kinase (AMPK) activation and is elevated in liver kinase B1 (LKB1)-deficient tumours. Furthermore, the Ser79 phosphorylation of PROX1 by AMPK enhances the recruitment of CUL4-DDB1 ubiquitin ligase to promote PROX1 degradation. Downregulation of PROX1 activates branched-chain amino acids (BCAA) degradation through mediating epigenetic modifications and inhibits mammalian target-of-rapamycin (mTOR) signalling. Importantly, PROX1 deficiency or Ser79 phosphorylation in liver tumour shows therapeutic resistance to metformin. Clinically, the AMPK-PROX1 axis in human cancers is important for patient clinical outcomes. Collectively, our results demonstrate that deficiency of the LKB1-AMPK axis in cancers reactivates PROX1 to sustain intracellular BCAA pools, resulting in enhanced mTOR signalling, and facilitating tumourigenesis and aggressiveness.


Assuntos
Proteínas Quinases Ativadas por AMP , Neoplasias , Humanos , Aminoácidos , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Transformação Celular Neoplásica , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Serina-Treonina Quinases TOR , Fatores de Transcrição/metabolismo
7.
ACS Appl Mater Interfaces ; 14(32): 36341-36352, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35916896

RESUMO

In light of the significance of exosomes in cancer diagnosis and treatment, it is important to understand the components and functions of exosomes. Herein, an all-in-one strategy has been proposed for comprehensive characterization of exosomal proteins based on nanoporous TiO2 clusters acting as both an extractor for exosome isolation and a nanoreactor for downstream molecular profiling. With the improved hydrophilicity and inherent properties of TiO2, exosomes can be captured by a versatile nanodevice through the specific binding and hydrophilicity interaction synergistically. The strong concerted effect between exosomes and nanodevices ensured high efficiency and specificity of exosome isolation with high recovery and low contaminations. Meanwhile, highly efficient downstream proteomic analysis of the purified exosomes was also enabled by the nanoporous TiO2 clusters. Benefiting from the porous structure of the nanodevice, the lysed exosomal proteins are highly concentrated in the nanopore to achieve high-efficiency in situ proteolytic digestion. Therefore, the unique features of the TiO2 clusters ensured that all the complex steps about isolation and analysis of exosomes were completed efficiently in one simple nanodevice. The concept was first proved with exosomes from cell culture medium, where a high number of identified total proteins and protein groups in exosomes were obtained. Taking advantage of these attractive merits, the first example of the integrated platform has been successfully applied to the analysis of exosomes in complex real-case samples. Not only 196 differential protein biomarker candidates were discovered, but also many more significant cellular components and functions related to gastric cancer were found. These results suggest that the nanoporous TiO2 cluster-based all-in-one strategy can serve as a simple, cost-effective, and integrated platform to facilitate comprehensive analysis of exosomes. Such an approach will provide a valuable tool for the study of exosome markers and their functions.


Assuntos
Exossomos , Neoplasias , Técnicas de Cultura de Células , Exossomos/química , Humanos , Neoplasias/metabolismo , Proteínas/análise , Proteômica/métodos
8.
Front Mol Biosci ; 9: 899192, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35573732

RESUMO

Glycosylation inhibition has great potential in cancer treatment. However, the corresponding cellular response, protein expression and glycosylation changes remain unclear. As a cell-permeable small-molecule inhibitor with reduced cellular toxicity, N-linked glycosylation inhibitor-1 (NGI-1) has become a great approach to regulate glycosylation in mammalian cells. Here for the first time, we applied a nascent proteomic method to investigate the effect of NGI-1 in hepatocellular carcinoma (HCC) cell line. Besides, hydrophilic interaction liquid chromatography (HILIC) was adopted for the enrichment of glycosylated peptides. Glycoproteomic analysis revealed the abundance of glycopeptides from LAMP2, NICA, and CEIP2 was significantly changed during NGI-1 treatment. Moreover, the alterations of LAMP2 site-specific intact N-glycopeptides were comprehensively assessed. NGI-1 treatment also led to the inhibition of Cathepsin D maturation and the induction of autophagy. In summary, we provided evidence that NGI-1 repressed the expression of glycosylated LAMP2 accompanied with the occurrence of lysosomal defects and autophagy.

9.
Cell Rep ; 38(11): 110509, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35294873

RESUMO

Protein fatty acylation regulates numerous cell signaling pathways. Polyunsaturated fatty acids (PUFAs) exert a plethora of physiological effects, including cell signaling regulation, with underlying mechanisms to be fully understood. Herein, we report that docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) regulate PI3K-AKT signaling by modifying PDK1 and AKT2. DHA-administered mice exhibit altered phosphorylation of proteins in signaling pathways. Methylene bridge-containing DHA/EPA acylate δ1 carbon of tryptophan 448/543 in PDK1 and tryptophan 414 in AKT2 via free radical pathway, recruit both the proteins to the cytoplasmic membrane, and activate PI3K signaling and glucose uptake in a tryptophan acylation-dependent but insulin-independent manner in cultured cells and in mice. DHA/EPA deplete cytosolic PDK1 and AKT2 and induce insulin resistance. Akt2 knockout in mice abrogates DHA/EPA-induced PI3K-AKT signaling. Our results identify PUFA's methylene bridge tryptophan acylation, a protein fatty acylation that regulates cell signaling and may underlie multifaceted effects of methylene-bridge-containing PUFAs.


Assuntos
Fosfatidilinositol 3-Quinases , Triptofano , Acilação , Animais , Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/metabolismo , Ácido Eicosapentaenoico/farmacologia , Ácidos Graxos Insaturados , Glucose/metabolismo , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Triptofano/metabolismo
10.
Anal Chem ; 94(11): 4666-4676, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35258917

RESUMO

Linkage isomers (α-2,3- or α-2,6-linkage) of sialylated N-glycans are involved in the emergence and progression of some diseases, so they are of great significance for diagnosing and monitoring diseases. However, the qualitative and quantitative analysis of sialylated N-glycan linkage isomers remains challenging due to their low abundance and limited isomeric separation techniques. Herein, we developed a novel strategy integrating one-step sialic acid derivatization, positive charge-sensitive separation and highly sensitive detection based on microfluidic capillary electrophoresis-mass spectrometry (MCE-MS) for fast and specific analysis of α-2,3- and α-2,6-linked sialylated N-glycan isomers. A kind of easily charged long-chain amino compound was screened first for one-step sialic acid derivatization so that only α-2,3- and α-2,6-linked isomers can be quickly and efficiently separated within 10 min by MCE due to the difference in structural conformation, whose separation mechanism was further theoretically supported by molecular dynamic simulation. In addition, different sialylated N-glycans were separated in order according to the number of sialic acids, so that a migration time-based prediction of the number of sialic acids was achieved. Finally, the sialylated N-glycome of human serum was profiled within 10 min and 6 of the 52 detected sialylated N-glycans could be potential diagnostic biomarkers of cervical cancer (CC), whose α-2,3- and α-2,6-linked isomers were distinguished by α-2,3Neuraminidase S.


Assuntos
Microfluídica , Ácido N-Acetilneuramínico , Eletroforese Capilar , Humanos , Espectrometria de Massas , Polissacarídeos/química , Ácidos Siálicos/análise
11.
EMBO Mol Med ; 14(2): e14713, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-34978375

RESUMO

The prevalence of intracranial aneurysm (IA) is increasing, and the consequences of its rupture are severe. This study aimed to reveal specific, sensitive, and non-invasive biomarkers for diagnosis and classification of ruptured and unruptured IA, to benefit the development of novel treatment strategies and therapeutics altering the course of the disease. We first assembled an extensive candidate biomarker bank of IA, comprising up to 717 proteins, based on altered proteins discovered in the current tissue and serum proteomic analysis, as well as from previous studies. Mass spectrometry assays for hundreds of biomarkers were efficiently designed using our proposed deep learning-based method, termed DeepPRM. A total of 113 potential markers were further quantitated in serum cohort I (n = 212) & II (n = 32). Combined with a machine-learning-based pipeline, we built two sets of biomarker combinations (P6 & P8) to accurately distinguish IA from healthy controls (accuracy: 87.50%) or classify IA rupture patients (accuracy: 91.67%) upon evaluation in the external validation set (n = 32). This extensive circulating biomarker development study provides valuable knowledge about IA biomarkers.


Assuntos
Aneurisma Roto , Aneurisma Intracraniano , Aneurisma Roto/diagnóstico , Aneurisma Roto/metabolismo , Biomarcadores , Humanos , Aneurisma Intracraniano/diagnóstico , Aneurisma Intracraniano/metabolismo , Proteômica , Medição de Risco
12.
Phenomics ; 2(4): 230-241, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36939752

RESUMO

Asparagine-linked glycosylation protein 1 homolog (ALG1) participates in the initial stage of protein N-glycosylation and N-glycosylation has been implicated in the process of hepatocellular carcinoma (HCC) progression. However, whether ALG1 plays a role in human HCC remains unknown. In this study, the expression profile of ALG1 in tumorous and corresponding adjacent non-tumor tissues was analyzed. The relationship of ALG1 expression with clinical features and prognosis of HCC patients was also evaluated using immuno-histochemical method. Here we found ALG1 decreased in HCC tissues compared with adjacent normal liver tissues, which predicted an unfavorable prognosis. Combined with RNA interference, nascent proteome and glycoproteome were determined systematically in Huh7 cell line. Bioinformatics analysis indicated that the differentially expressed proteins participating in the response of ALG1 knockdown were most significantly associated with cell-cell adhesion. Functional studies confirmed that knockdown of ALG1 reduced cell adhesion capacity, and promoted cell migration. Furthermore, down-regulation of H8N2 (on N-glycosite N651) and H5N4S2F1 (on N-glycosite N692) from N-cadherin was identified as a feature of ALG1 knockdown. Our findings revealed that ALG1 controlled the expression of glycosylated N-cadherin and played a role in HCC migration, with implications for prognosis. Supplementary Information: The online version contains supplementary material available at 10.1007/s43657-022-00050-5.

13.
Exp Eye Res ; 212: 108794, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34656547

RESUMO

OBJECTIVE: Diabetic Keratopathy (DK) is one of the significant complications of type II diabetes (T2DM) with pathogenesis not yet clarified. Since hyperglycemia is able to change the protein components contained in plasma exosomes, liquid chromatography-tandem mass spectrometry (LC-MS/MS) is considered as feasible to analyze the expression of plasma exosomal proteins in patients with T2DM and non-diabetic patients respectively, find critical biological markers, and explore the mechanism of DK as well as potential therapeutic targets. METHOD: Blood and clinical information of corneal epithelial injury in a diabetic group (the study group) and a non-diabetic group (the control group), who were patients admitted to the Department of Ophthalmology, Yangpu Hospital, Tongji University School of Medicine from July 2020 to November 2020, were collected. The qEV size exclusion method was adopted to separate exosomes from plasma. The exosomes were then identified through transmission electron microscopy (TEM), nanoparticle tracking analyzer (NTA), and Western blot. The plasma exosomes of the study group and the control group were quantitatively analyzed by proteomics. A bioinformatics method is utilized to screen differential proteins and the expression of the differential proteins was verified by Western blot. RESULT: TEM indicated that the exosomes had a double-concave disc-like appearance, with a size of about 100 nm, and Western blot expressed as CD63 and TSG101. The plasma exosomes of the study group and the control group were analyzed by quantitative proteomics with a total number of 952 proteins detected of which 245 proteins existed in the ExoCarta exosomal protein database. Through adoption of P-value to screen credible differential proteins, the heat map displayed 28 differential proteins, 7 upregulated proteins, and 21 downregulated proteins; the volcano map displayed 7 upregulated proteins and 22 downregulated proteins; the PPI interaction map displayed 12 upregulated proteins and 18 downregulated proteins. Through GO enrichment analysis, it was identified that the differential protein participated in the main biological processes and was involved in regulating the cell's stimulation response to insulin, the insulin receptor signaling pathway, and the activity of glycosylphosphatidylinositol phospholipase D as well as anti-oxidation. The enriched cell components include main components such as exosomes, blood particles, and cytoplasm. KEGG enrichment analysis indicated that the target protein FLOT2 was mainly concentrated in insulin-related signaling pathways. Western blot indicated that the expression of FLOT2 in the study group was lower compared with the control group while the expression of Exo70 was higher. CONCLUSION: Proteomic analysis of the study group and the control group displayed a variety of proteins in plasma exosomes. The downregulated protein FLOT2 in the study group was closely related to the occurrence, development, and complication of DK in T2DM patients. The expression status of plasma FLOT2 protein in T2DM patients is expected to be a biomarker for diagnosing and monitoring of DK.


Assuntos
Doenças da Córnea/metabolismo , Diabetes Mellitus Tipo 2/complicações , Epitélio Corneano/metabolismo , Exossomos/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Idoso , Biomarcadores/metabolismo , Cromatografia Líquida , Doenças da Córnea/etiologia , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Espectrometria de Massas em Tandem
14.
Nat Commun ; 12(1): 6073, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34663801

RESUMO

Large-scale profiling of intact glycopeptides is critical but challenging in glycoproteomics. Data independent acquisition (DIA) is an emerging technology with deep proteome coverage and accurate quantitative capability in proteomics studies, but is still in the early stage of development in the field of glycoproteomics. We propose GproDIA, a framework for the proteome-wide characterization of intact glycopeptides from DIA data with comprehensive statistical control by a 2-dimentional false discovery rate approach and a glycoform inference algorithm, enabling accurate identification of intact glycopeptides using wide isolation windows. We further utilize a semi-empirical spectrum prediction strategy to expand the coverage of spectral libraries of glycopeptides. We benchmark our method for N-glycopeptide profiling on DIA data of yeast and human serum samples, demonstrating that DIA with GproDIA outperforms the data-dependent acquisition-based methods for glycoproteomics in terms of capacity and data completeness of identification, as well as accuracy and precision of quantification. We expect that this work can provide a powerful tool for glycoproteomic studies.


Assuntos
Glicopeptídeos/análise , Proteoma/análise , Proteômica/métodos , Algoritmos , Proteínas Sanguíneas/química , Glicoproteínas/química , Humanos , Espectrometria de Massas , Polissacarídeos/química , Proteínas de Schizosaccharomyces pombe/química , Fluxo de Trabalho
15.
Elife ; 102021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34486519

RESUMO

Background: Bicuspid aortic valve (BAV) is the most common congenital cardiovascular disease in general population and is frequently associated with the development of thoracic aortic aneurysm (TAA). There is no effective strategy to intervene with TAA progression due to an incomplete understanding of the pathogenesis. Insufficiency of NOTCH1 expression is highly related to BAV-TAA, but the underlying mechanism remains to be clarified. Methods: A comparative proteomics analysis was used to explore the biological differences between non-diseased and BAV-TAA aortic tissues. A microfluidics-based aorta smooth muscle-on-a-chip model was constructed to evaluate the effect of NOTCH1 deficiency on contractile phenotype and mitochondrial dynamics of human aortic smooth muscle cells (HAoSMCs). Results: Protein analyses of human aortic tissues showed the insufficient expression of NOTCH1 and impaired mitochondrial dynamics in BAV-TAA. HAoSMCs with NOTCH1-knockdown exhibited reduced contractile phenotype and were accompanied by attenuated mitochondrial fusion. Furthermore, we identified that mitochondrial fusion activators (leflunomide and teriflunomide) or mitochondrial fission inhibitor (Mdivi-1) partially rescued the disorders of mitochondrial dynamics in HAoSMCs derived from BAV-TAA patients. Conclusions: The aorta smooth muscle-on-a-chip model simulates the human pathophysiological parameters of aorta biomechanics and provides a platform for molecular mechanism studies of aortic disease and related drug screening. This aorta smooth muscle-on-a-chip model and human tissue proteomic analysis revealed that impaired mitochondrial dynamics could be a potential therapeutic target for BAV-TAA. Funding: National Key R and D Program of China, National Natural Science Foundation of China, Shanghai Municipal Science and Technology Major Project, Shanghai Science and Technology Commission, and Shanghai Municipal Education Commission.


To function properly, the heart must remain a one-way system, pumping out oxygenated blood into the aorta ­ the largest artery in the body ­ so it can be distributed across the organism. The aortic valve, which sits at the entrance of the aorta, is a key component of this system. Its three flaps (or 'cusps') are pushed open when the blood exits the heart, and they shut tightly so it does not flow back in the incorrect direction. Nearly 1.4% of people around the world are born with 'bicuspid' aortic valves that only have two flaps. These valves may harden or become leaky, forcing the heart to work harder. This defect is also associated with bulges on the aorta which progressively weaken the artery, sometimes causing it to rupture. Open-heart surgery is currently the only way to treat these bulges (or 'aneurysms'), as no drug exists that could slow down disease progression. This is partly because the biological processes involved in the aneurysms worsening and bursting open is unclear. Recent studies have highlighted that many individuals with bicuspid aortic valves also have lower levels of a protein known as NOTCH1, which plays a key signalling role for cells. Problems in the mitochondria ­ the structures that power up a cell ­ are also observed. However, it is not known how these findings are connected or linked with the aneurysms developing. To answer this question, Abudupataer et al. analyzed the proteins present in diseased and healthy aortic muscle cells, confirming a lower production of NOTCH1 and impaired mitochondria in diseased tissues. They also created an 'aorta-on-a-chip' model where aortic muscle cells were grown in the laboratory under conditions resembling those found in the body ­ including the rhythmic strain that the aorta is under because of the heart beating. Abudupataer et al. then reduced NOTCH1 levels in healthy samples, which made the muscle tissue less able to contract and reduced the activity of the mitochondria. Applying drugs that tweak mitochondrial activity helped tissues from patients with bicuspid aortic valves to work better. These compounds could potentially benefit individuals with deficient aortic valves, but experiments in animals and clinical trials would be needed first to confirm the results and assess safety. The aorta-on-a-chip model developed by Abudupataer et al. also provides a platform to screen for drugs and examine the molecular mechanisms at play in aortic diseases.


Assuntos
Aneurisma Aórtico , Doença da Válvula Aórtica Bicúspide , Dinâmica Mitocondrial , Miócitos de Músculo Liso , Análise Serial de Tecidos/métodos , Adulto , Idoso , Aorta/citologia , Aorta/efeitos dos fármacos , Aneurisma Aórtico/metabolismo , Aneurisma Aórtico/fisiopatologia , Doença da Válvula Aórtica Bicúspide/metabolismo , Doença da Válvula Aórtica Bicúspide/fisiopatologia , Fármacos Cardiovasculares/farmacologia , Linhagem Celular , Feminino , Humanos , Dispositivos Lab-On-A-Chip , Masculino , Pessoa de Meia-Idade , Dinâmica Mitocondrial/efeitos dos fármacos , Dinâmica Mitocondrial/fisiologia , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo
16.
Front Chem ; 9: 705341, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34336790

RESUMO

Haptoglobin (Hp) is one of the acute-phase response proteins secreted by the liver, and its aberrant N-glycosylation was previously reported in hepatocellular carcinoma (HCC). Limited studies on Hp O-glycosylation have been previously reported. In this study, we aimed to discover and confirm its O-glycosylation in HCC based on lectin binding and mass spectrometry (MS) detection. First, serum Hp was purified from patients with liver cirrhosis (LC) and HCC, respectively. Then, five lectins with Gal or GalNAc monosaccharide specificity were chosen to perform lectin blot, and the results showed that Hp in HCC bound to these lectins in a much stronger manner than that in LC. Furthermore, label-free quantification based on MS was performed. A total of 26 intact O-glycopeptides were identified on Hp, and most of them were elevated in HCC as compared to LC. Among them, the intensity of HYEGS 316TVPEK (H1N1S1) on Hp was the highest in HCC patients. Increased HYEGS 316TVPEK (H1N1S1) in HCC was quantified and confirmed using the MS method based on 18O/16O C-terminal labeling and multiple reaction monitoring. This study provided a comprehensive understanding of the glycosylation of Hp in liver diseases.

17.
Mitochondrion ; 60: 150-159, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34375734

RESUMO

As an essential post-translational modification, acetylation participates in various cellular processes and shows aberrances during tumorigenesis. Owing to its modification substrate, acetyl-CoA, acetylation is postulated as a depot for acetyl groups and evolve to build a connection between epigenetics and metabolism. Here we depict a distinct acetylome atlas of hepatocellular carcinoma from the perspectives of both protein acetylation and acetyl-CoA metabolism. We found that tumor acetylome demonstrated a compartment-dependent alteration that the acetylation level of mitochondrial proteins tended to be decreased while nuclear proteins were highly acetylated. In addition, elevated expression of ATP-citrate synthase (ACLY) was observed in tumors, which would facilitate histone acetylation by transporting mitochondrial acetyl coenzyme A to the nucleus. A hypothetical model of the oncogenic acetylome was proposed that growing demands for histone acetylation in tumor cells would drive the relocalization of acetyl-CoA to the nucleus, which may contribute to the global deacetylation of mitochondrial proteins to support the nuclear acetyl-CoA pool in an ACLY-dependent manner. Our findings are thought-provoking on the potential linkage between epigenetics and metabolism in the progression of tumorigenesis.


Assuntos
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Mitocôndrias Hepáticas/metabolismo , Acetilcoenzima A/metabolismo , Acetilação , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Componente Principal
18.
Ann Transl Med ; 9(14): 1182, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34430623

RESUMO

BACKGROUND: Bicuspid aortic valve (BAV) is the most common congenital heart anomaly and is prone to cause complications, such as valvular stenosis and thoracic aortic dilation. There is currently no reliable way to predict the progression rate to thoracic aortic aneurysm. Here, we aimed to characterize the proteomic landscape in the plasma of stenotic BAV patients and provide potential biomarkers to predict progressive aortic dilation. METHODS: Plasma samples were obtained from 45 subjects (30 stenotic BAV patients and 15 healthy controls). All samples were properly prepared and analyzed using mass spectrometry (MS)-based label-free quantitative proteomics. RESULTS: A total of 748 plasma proteins had missingness <50%, and 193 (25.8%) were differentially expressed in the BAV patients. Functions regarding cell junction and actin cytoskeleton were largely enriched. NOTCH3, a Notch receptor known to interact with the BAV-causing gene NOTCH1, was negatively correlated with aortic diameter and was downregulated in BAV patients' plasma and aortic smooth muscle cells. Further, a subset of plasma proteins, including ADAM10, was associated with rapidly progressive aortic dilation in BAV patients. CONCLUSIONS: Our data reveal unique features in the proteomic architecture of stenotic BAV patients' plasma, and we propose the potential of Notch signaling proteins NOTCH3 and ADAM10 in predicting aortic dilation.

19.
Nat Metab ; 3(6): 859-875, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34140692

RESUMO

Global histone acetylation varies with changes in the nutrient and cell cycle phases; however, the mechanisms connecting these variations are not fully understood. Herein, we report that nutrient-related and cell-cycle-regulated nuclear acetate regulates global histone acetylation. Histone deacetylation-generated acetate accumulates in the nucleus and induces histone hyperacetylation. The nuclear acetate levels were controlled by glycolytic enzyme triosephosphate isomerase 1 (TPI1). Cyclin-dependent kinase 2 (CDK2), which is phosphorylated and activated by nutrient-activated mTORC1, phosphorylates TPI1 Ser 117 and promotes nuclear translocation of TPI1, decreases nuclear dihydroxyacetone phosphate (DHAP) and induces nuclear acetate accumulation because DHAP scavenges acetate via the formation of 1-acetyl-DHAP. CDK2 accumulates in the cytosol during the late G1/S phases. Inactivation or blockade of nuclear translocation of TPI1 abrogates nutrient-dependent and cell-cycle-dependent global histone acetylation, chromatin condensation, gene transcription and DNA replication. These results identify the mechanism of maintaining global histone acetylation by nutrient and cell cycle signals.


Assuntos
Ciclo Celular/fisiologia , Núcleo Celular/metabolismo , Fosfato de Di-Hidroxiacetona/metabolismo , Histonas/metabolismo , Nutrientes/metabolismo , Transdução de Sinais , Acetatos/metabolismo , Acetilação , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , Replicação do DNA , Humanos , Fosforilação , Transcrição Gênica
20.
J Chromatogr A ; 1652: 462351, 2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34174714

RESUMO

Comprehensive elucidation of the composition of multiprotein complexes in model organisms is essential to understand conserved biological systems, but large-scale mapping physical association networks is still challenging due to limited throughput of present methods. In this work, a strategy coupling array-based online two-dimensional liquid chromatography (array-based 2D-LC) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) was demonstrated for high throughput and in-depth identification of protein complexes from cultured human HeLa cell extracts. Mixed-bed ion-exchange column was employed as the first dimensional (1stD) separating mode and an array consisting of eight reversed phase columns was developed as the second dimensional (2ndD) mode. Taking advantage of array parallel strategy, this online system showed an 8-fold increase in throughput. After array-based online 2D-LC separation, altogether 256 × 2ndD fractions were collected for further LC-MS/MS analysis. Public databases of protein-protein interaction (PPI) and co-elution curves identified by LC-MS were applied to reconstruct the protein complexes. A rigorous inspection was operated by cataloging the protein complexes into chromatographic fractions to minimize the number of false positives. As result, a total number of 4,436 proteins were identified and 26,092 elution curves were graphed. A network consisting of 47,745 PPIs was established among 2,201 proteins and presented 1,530 putative protein complexes with high confidence. Most of the identified PPIs were linked to diverse biological processes and may reveal further disease mechanism and therapeutic strategy.


Assuntos
Cromatografia Líquida/métodos , Complexos Multiproteicos/análise , Espectrometria de Massas em Tandem/métodos , Células HeLa , Humanos , Complexos Multiproteicos/isolamento & purificação , Mapeamento de Interação de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...